Search results for: crystals-defects-and-microstructures-modeling-across-scales

Crystals Defects and Microstructures

Author : Rob Phillips
File Size : 42.15 MB
Format : PDF, Mobi
Download : 679
Read : 434
Download »
Materials science has emerged as one of the central pillars of the modern physical sciences and engineering, and is now even beginning to claim a role in the biological sciences. A central tenet in the analysis of materials is the structure-property paradigm, which proposes a direct connection between the geometric structures within a material and its properties. The increasing power of high-speed computation has had a major impact on theoretical materials science and has permitted the systematic examination of this connection between structure and properties.

Multiscale Modeling Simulation and Visualization and Their Potential for Future Aerospace Systems

Author :
File Size : 65.90 MB
Format : PDF, ePub, Docs
Download : 271
Read : 738
Download »

Multiscale Modeling and Simulation of Shock Wave Induced Failure in Materials Science

Author : Martin Oliver Steinhauser
File Size : 27.10 MB
Format : PDF, ePub, Mobi
Download : 175
Read : 831
Download »
Martin Oliver Steinhauser deals with several aspects of multiscale materials modeling and simulation in applied materials research and fundamental science. He covers various multiscale modeling approaches for high-performance ceramics, biological bilayer membranes, semi-flexible polymers, and human cancer cells. He demonstrates that the physics of shock waves, i.e., the investigation of material behavior at high strain rates and of material failure, has grown to become an important interdisciplinary field of research on its own. At the same time, progress in computer hardware and software development has boosted new ideas in multiscale modeling and simulation. Hence, bridging the length and time scales in a theoretical-numerical description of materials has become a prime challenge in science and technology.

Molecular Modeling of Corrosion Processes

Author : Christopher D. Taylor
File Size : 34.65 MB
Format : PDF, Mobi
Download : 442
Read : 839
Download »
Presents opportunities for making significant improvements in preventing harmful effects that can be caused by corrosion Describes concepts of molecular modeling in the context of materials corrosion Includes recent examples of applications of molecular modeling to corrosion phenomena throughout the text Details how molecular modeling can give insights into the multitude of interconnected and complex processes that comprise the corrosion of metals Covered applications include diffusion and electron transfer at metal/electrolyte interfaces, Monte Carlo simulations of corrosion, corrosion inhibition, interrogating surface chemistry, and properties of passive films Presents current challenges and likely developments in this field for the future

Integrated Computational Materials Engineering ICME for Metals

Author : Mark F. Horstemeyer
File Size : 70.50 MB
Format : PDF, ePub, Mobi
Download : 333
Read : 548
Download »
This text delivers a comprehensive overview of the methods of Integrated Computational Materials Engineering (ICME), and provides clear examples to demonstrate the multiscale modeling methodology. It walks beginners through the various aspects of modeling and simulation related to materials processing.

Computational Methods for Solids and Fluids

Author : Adnan Ibrahimbegovic
File Size : 42.18 MB
Format : PDF, Mobi
Download : 320
Read : 760
Download »
This volume contains the best papers presented at the 2nd ECCOMAS International Conference on Multiscale Computations for Solids and Fluids, held June 10-12, 2015. Topics dealt with include multiscale strategy for efficient development of scientific software for large-scale computations, coupled probability-nonlinear-mechanics problems and solution methods, and modern mathematical and computational setting for multi-phase flows and fluid-structure interaction. The papers consist of contributions by six experts who taught short courses prior to the conference, along with several selected articles from other participants dealing with complementary issues, covering both solid mechanics and applied mathematics.

Materials Science Reading Sampler

Author : Wiley
File Size : 32.45 MB
Format : PDF, ePub, Mobi
Download : 961
Read : 222
Download »
The 2013 Materials Science eBook Sampler includes select material from seven Materials Science titles. Titles are from a number of Wiley imprints including Wiley, Wiley-VCH, Wiley-American Ceramic Society, Wiley-Scrivener and Wiley-The Minerals, Metals and Materials Society. The material that is included for each selection is the book’s full Table of Contents as well as a sample chapter. If you would like to read more from these books, you can purchase the full book or e-book at your favorite online retailer.

Hybrid Machining

Author : Xichun Luo
File Size : 33.51 MB
Format : PDF
Download : 357
Read : 1246
Download »
Hybrid Machining: Theory, Methods, and Case Studies covers the scientific fundamentals, techniques, applications and real-world descriptions of emerging hybrid machining technology. This field is advancing rapidly in industrial and academic contexts, creating a great need for the fundamental and technical guidance that this book provides. The book includes discussions of basic concepts, process design principles, standard hybrid machining processes, multi-scale modeling approaches, design, on-machine metrology and work handling systems. Readers interested in manufacturing systems, product design or machining technology will find this one-stop guide to hybrid machining the ideal reference. Includes tables of recommended processing parameters for key engineering materials/products for each hybrid machining process Provides case studies covering real industrial applications Explains how to use multiscale modeling for hybrid machining

Comprehensive Structural Integrity

Author : Ian Milne
File Size : 74.99 MB
Format : PDF, Docs
Download : 877
Read : 1083
Download »
The aim of this major reference work is to provide a first point of entry to the literature for the researchers in any field relating to structural integrity in the form of a definitive research/reference tool which links the various sub-disciplines that comprise the whole of structural integrity. Special emphasis will be given to the interaction between mechanics and materials and structural integrity applications. Because of the interdisciplinary and applied nature of the work, it will be of interest to mechanical engineers and materials scientists from both academic and industrial backgrounds including bioengineering, interface engineering and nanotechnology. The scope of this work encompasses, but is not restricted to: fracture mechanics, fatigue, creep, materials, dynamics, environmental degradation, numerical methods, failure mechanisms and damage mechanics, interfacial fracture and nano-technology, structural analysis, surface behaviour and heart valves. The structures under consideration include: pressure vessels and piping, off-shore structures, gas installations and pipelines, chemical plants, aircraft, railways, bridges, plates and shells, electronic circuits, interfaces, nanotechnology, artificial organs, biomaterial prostheses, cast structures, mining... and more. Case studies will form an integral part of the work.

Handbook of Materials Modeling

Author : Sidney Yip
File Size : 24.34 MB
Format : PDF, ePub, Docs
Download : 256
Read : 1171
Download »
The first reference of its kind in the rapidly emerging field of computational approachs to materials research, this is a compendium of perspective-providing and topical articles written to inform students and non-specialists of the current status and capabilities of modelling and simulation. From the standpoint of methodology, the development follows a multiscale approach with emphasis on electronic-structure, atomistic, and mesoscale methods, as well as mathematical analysis and rate processes. Basic models are treated across traditional disciplines, not only in the discussion of methods but also in chapters on crystal defects, microstructure, fluids, polymers and soft matter. Written by authors who are actively participating in the current development, this collection of 150 articles has the breadth and depth to be a major contributor toward defining the field of computational materials. In addition, there are 40 commentaries by highly respected researchers, presenting various views that should interest the future generations of the community. Subject Editors: Martin Bazant, MIT; Bruce Boghosian, Tufts University; Richard Catlow, Royal Institution; Long-Qing Chen, Pennsylvania State University; William Curtin, Brown University; Tomas Diaz de la Rubia, Lawrence Livermore National Laboratory; Nicolas Hadjiconstantinou, MIT; Mark F. Horstemeyer, Mississippi State University; Efthimios Kaxiras, Harvard University; L. Mahadevan, Harvard University; Dimitrios Maroudas, University of Massachusetts; Nicola Marzari, MIT; Horia Metiu, University of California Santa Barbara; Gregory C. Rutledge, MIT; David J. Srolovitz, Princeton University; Bernhardt L. Trout, MIT; Dieter Wolf, Argonne National Laboratory.