Search results for: hands-on-data-visualization

Hands On Data Visualization

Author : Jack Dougherty
File Size : 73.11 MB
Format : PDF, Mobi
Download : 819
Read : 981
Download »
Tell your story and show it with data, using free and easy-to-learn tools on the web. This introductory book teaches you how to design interactive charts and customized maps for your website, beginning with simple drag-and-drop tools such as Google Sheets, Datawrapper, and Tableau Public. You'll also gradually learn how to edit open source code templates like Chart.js, Highcharts, and Leaflet on GitHub. Hands-On Data Visualization takes you step-by-step through tutorials, real-world examples, and online resources. This practical guide is ideal for students, nonprofit organizations, small business owners, local governments, journalists, academics, and anyone who wants to take data out of spreadsheets and turn it into lively interactive stories. No coding experience is required. Build interactive charts and maps and embed them in your website Understand the principles for designing effective charts and maps Learn key data visualization concepts to help you choose the right tools Convert and transform tabular and spatial data to tell your data story Edit and host Chart.js, Highcharts, and Leaflet map code templates on GitHub Learn how to detect bias in charts and maps produced by others

Hands On Data Visualization

Author : Jack Dougherty
File Size : 54.24 MB
Format : PDF, Kindle
Download : 689
Read : 1002
Download »
Tell your story and show it with data, using free and easy-to-learn tools on the web. This introductory book teaches you how to design interactive charts and customized maps for your website, beginning with simple drag-and-drop tools such as Google Sheets, Datawrapper, and Tableau Public. You'll also gradually learn how to edit open source code templates like Chart.js, Highcharts, and Leaflet on GitHub. Hands-On Data Visualization for All takes you step-by-step through tutorials, real-world examples, and online resources. This hands-on resource is ideal for students, nonprofit organizations, small business owners, local governments, journalists, academics, and anyone who wants to take data out of spreadsheets and turn it into lively interactive stories. No coding experience is required. Build interactive charts and maps and embed them in your website Understand the principles for designing effective charts and maps Learn key data visualization concepts to help you choose the right tools Convert and transform tabular and spatial data to tell your data story Edit and host Chart.js, Highcharts, and Leaflet map code templates on GitHub Learn how to detect bias in charts and maps produced by others.

Hands On Data Visualization

Author : Jack Dougherty
File Size : 30.19 MB
Format : PDF, Kindle
Download : 141
Read : 189
Download »
Tell your story and show it with data, using free and easy-to-learn tools on the web. This introductory book teaches you how to design interactive charts and customized maps for your website, beginning with simple drag-and-drop tools such as Google Sheets, Datawrapper, and Tableau Public. You'll also gradually learn how to edit open source code templates like Chart.js, Highcharts, and Leaflet on GitHub. Hands-On Data Visualization for All takes you step-by-step through tutorials, real-world examples, and online resources. This hands-on resource is ideal for students, nonprofit organizations, small business owners, local governments, journalists, academics, and anyone who wants to take data out of spreadsheets and turn it into lively interactive stories. No coding experience is required. Build interactive charts and maps and embed them in your website Understand the principles for designing effective charts and maps Learn key data visualization concepts to help you choose the right tools Convert and transform tabular and spatial data to tell your data story Edit and host Chart.js, Highcharts, and Leaflet map code templates on GitHub Learn how to detect bias in charts and maps produced by others

Hands On Data Visualization with Bokeh

Author : Kevin Jolly
File Size : 70.13 MB
Format : PDF
Download : 282
Read : 513
Download »
Learn how to create interactive and visually aesthetic plots using the Bokeh package in Python Key Features A step by step approach to creating interactive plots with Bokeh Go from installation all the way to deploying your very own Bokeh application Work with a real time datasets to practice and create your very own plots and applications Book Description Adding a layer of interactivity to your plots and converting these plots into applications hold immense value in the field of data science. The standard approach to adding interactivity would be to use paid software such as Tableau, but the Bokeh package in Python offers users a way to create both interactive and visually aesthetic plots for free. This book gets you up to speed with Bokeh - a popular Python library for interactive data visualization. The book starts out by helping you understand how Bokeh works internally and how you can set up and install the package in your local machine. You then use a real world data set which uses stock data from Kaggle to create interactive and visually stunning plots. You will also learn how to leverage Bokeh using some advanced concepts such as plotting with spatial and geo data. Finally you will use all the concepts that you have learned in the previous chapters to create your very own Bokeh application from scratch. By the end of the book you will be able to create your very own Bokeh application. You will have gone through a step by step process that starts with understanding what Bokeh actually is and ends with building your very own Bokeh application filled with interactive and visually aesthetic plots. What you will learn Installing Bokeh and understanding its key concepts Creating plots using glyphs, the fundamental building blocks of Bokeh Creating plots using different data structures like NumPy and Pandas Using layouts and widgets to visually enhance your plots and add a layer of interactivity Building and hosting applications on the Bokeh server Creating advanced plots using spatial data Who this book is for This book is well suited for data scientists and data analysts who want to perform interactive data visualization on their web browsers using Bokeh. Some exposure to Python programming will be helpful, but prior experience with Bokeh is not required.

Hands On Data Science with Anaconda

Author : Yuxing Yan
File Size : 50.54 MB
Format : PDF, ePub, Docs
Download : 614
Read : 767
Download »
Develop, deploy, and streamline your data science projects with the most popular end-to-end platform, Anaconda Key Features -Use Anaconda to find solutions for clustering, classification, and linear regression -Analyze your data efficiently with the most powerful data science stack -Use the Anaconda cloud to store, share, and discover projects and libraries Book Description Anaconda is an open source platform that brings together the best tools for data science professionals with more than 100 popular packages supporting Python, Scala, and R languages. Hands-On Data Science with Anaconda gets you started with Anaconda and demonstrates how you can use it to perform data science operations in the real world. The book begins with setting up the environment for Anaconda platform in order to make it accessible for tools and frameworks such as Jupyter, pandas, matplotlib, Python, R, Julia, and more. You’ll walk through package manager Conda, through which you can automatically manage all packages including cross-language dependencies, and work across Linux, macOS, and Windows. You’ll explore all the essentials of data science and linear algebra to perform data science tasks using packages such as SciPy, contrastive, scikit-learn, Rattle, and Rmixmod. Once you’re accustomed to all this, you’ll start with operations in data science such as cleaning, sorting, and data classification. You’ll move on to learning how to perform tasks such as clustering, regression, prediction, and building machine learning models and optimizing them. In addition to this, you’ll learn how to visualize data using the packages available for Julia, Python, and R. What you will learn Perform cleaning, sorting, classification, clustering, regression, and dataset modeling using Anaconda Use the package manager conda and discover, install, and use functionally efficient and scalable packages Get comfortable with heterogeneous data exploration using multiple languages within a project Perform distributed computing and use Anaconda Accelerate to optimize computational powers Discover and share packages, notebooks, and environments, and use shared project drives on Anaconda Cloud Tackle advanced data prediction problems Who this book is for Hands-On Data Science with Anaconda is for you if you are a developer who is looking for the best tools in the market to perform data science. It’s also ideal for data analysts and data science professionals who want to improve the efficiency of their data science applications by using the best libraries in multiple languages. Basic programming knowledge with R or Python and introductory knowledge of linear algebra is expected.

Hands On Data Analysis with Pandas

Author : Stefanie Molin
File Size : 73.35 MB
Format : PDF, ePub, Docs
Download : 416
Read : 1124
Download »
Knowing how to work with data to extract insights generates significant value. This book will help you to develop data analysis skills using a hands-on approach and real-world data. You’ll get up to speed with pandas 1.x in no time and build some software engineering skills in the process, vastly expanding your data science toolbox.

Python Data Visualization Essentials Guide

Author : Kallur Rahman
File Size : 49.86 MB
Format : PDF, Kindle
Download : 348
Read : 630
Download »
Build your data science skills. Start data visualization Using Python. Right away. Become a good data analyst by creating quality data visualizations using Python. KEY FEATURES ● Exciting coverage on loads of Python libraries, including Matplotlib, Seaborn, Pandas, and Plotly. ● Tons of examples, illustrations, and use-cases to demonstrate visual storytelling of varied datasets. ● Covers a strong fundamental understanding of exploratory data analysis (EDA), statistical modeling, and data mining. DESCRIPTION Data visualization plays a major role in solving data science challenges with various capabilities it offers. This book aims to equip you with a sound knowledge of Python in conjunction with the concepts you need to master to succeed as a data visualization expert. The book starts with a brief introduction to the world of data visualization and talks about why it is important, the history of visualization, and the capabilities it offers. You will learn how to do simple Python-based visualization with examples with progressive complexity of key features. The book starts with Matplotlib and explores the power of data visualization with over 50 examples. It then explores the power of data visualization using one of the popular exploratory data analysis-oriented libraries, Pandas. The book talks about statistically inclined data visualization libraries such as Seaborn. The book also teaches how we can leverage bokeh and Plotly for interactive data visualization. Each chapter is enriched and loaded with 30+ examples that will guide you in learning everything about data visualization and storytelling of mixed datasets. WHAT YOU WILL LEARN ● Learn to work with popular Python libraries and frameworks, including Seaborn, Bokeh, and Plotly. ● Practice your data visualization understanding across numerous datasets and real examples. ● Learn to visualize geospatial and time-series datasets. ● Perform correlation and EDA analysis using Pandas and Matplotlib. ● Get to know storytelling of complex and unstructured data using Bokeh and Pandas. ● Learn best practices in writing clean and short python scripts for a quicker visual summary of datasets. WHO THIS BOOK IS FOR This book is for all data analytics professionals, data scientists, and data mining hobbyists who want to be strong data visualizers by learning all the popular Python data visualization libraries. Prior working knowledge of Python is assumed. TABLE OF CONTENTS 1. Introduction to Data Visualization 2. Why Data Visualization 3. Various Data Visualization Elements and Tools 4. Using Matplotlib with Python 5. Using NumPy and Pandas for Plotting 6. Using Seaborn for Visualization 7. Using Bokeh with Python 8. Using Plotly, Folium, and Other Tools for Data Visualization 9. Hands-on Examples and Exercises, Case Studies, and Further Resources

Hands on Data Visualization with D3 js 5 0

Author : Eleftheria Batsou
File Size : 73.82 MB
Format : PDF, Mobi
Download : 561
Read : 308
Download »
"Do you want to create stunning data visualizations using D3 and SVG? Then this course is for you; it will teach you about scales by converting your data into visuals that will work on any browser or device. You will learn to add many transitions and animations to your graphs to make them more interesting and appealing to users. This course will also help you build interactive bar charts, scatter plots, and force layouts by manipulating large amounts of data. You will also create choropleth maps and layouts to display visual patterns on geographical locations. By the end of this course, you will have learned how to visualize your data and code more effectively. You will have built your own data models with D3.js much more rapidly and very easily."--Resource description page.

Hands on Data Analysis and Visualization with Pandas

Author : PURNA CHANDER RAO. KATHULA
File Size : 88.20 MB
Format : PDF, Kindle
Download : 701
Read : 345
Download »
Learn how to use JupyterLab, Numpy, pandas, Scipy, Matplotlib, and Seaborn for Data science KEY FEATURES ● Get familiar with different inbuilt Data structures, Functional programming, and Datetime objects. ● Handling heavy Datasets to optimize the data types for memory management, reading files in chunks, dask, and modin pandas. ● Time-series analysis to find trends, seasonality, and cyclic components. ● Seaborn to build aesthetic plots with high-level interfaces and customized themes. ● Exploratory data analysis with real-time datasets to maximize the insights about data. DESCRIPTION The book will start with quick introductions to Python and its ecosystem libraries for data science such as JupyterLab, Numpy, Pandas, SciPy, Matplotlib, and Seaborn. This book will help in learning python data structures and essential concepts such as Functions, Lambdas, List comprehensions, Datetime objects, etc. required for data engineering. It also covers an in-depth understanding of Python data science packages where JupyterLab used as an IDE for writing, documenting, and executing the python code, Numpy used for computation of numerical operations, Pandas for cleaning and reorganizing the data, handling large datasets and merging the dataframes to get meaningful insights. You will go through the statistics to understand the relation between the variables using SciPy and building visualization charts using Matplotllib and Seaborn libraries. WHAT WILL YOU LEARN ● Learn about Python data containers, their methods, and attributes. ● Learn Numpy arrays for the computation of numerical data. ● Learn Pandas data structures, DataFrames, and Series. ● Learn statistics measures of central tendency, central limit theorem, confidence intervals, and hypothesis testing. ● A brief understanding of visualization, control, and draw different inbuilt charts to extract important variables, detect outliers, and anomalies using Matplotlib and Seaborn. WHO THIS BOOK IS FOR This book is for anyone who wants to use Python for Data Analysis and Visualization. This book is for novices as well as experienced readers with working knowledge of the pandas library. Basic knowledge of Python is a must. TABLE OF CONTENTS 1. Introduction to Data Analysis 2. Jupyter lab 3. Python overview 4. Introduction to Numpy 5. Introduction to Pandas 6. Data Analysis 7. Time-Series Analysis 8. Introduction to Statistics 9. Matplotlib 10. Seaborn 11. Exploratory Data Analysis

Data Visualization with Python for Beginners Visualize Your Data Using Pandas Matplotlib and Seaborn

Author : Ai Publishing
File Size : 81.90 MB
Format : PDF, Mobi
Download : 617
Read : 534
Download »
Data Visualization using Python for Beginners Are you looking for a hands-on approach to learn Python for Data Visualization Fast? Do you need to start learning Python for Data Visualization from Scratch? This book is for you. This book works as guide to present fundamental Python Libraries and basis related to Data Visualization using Python. Data science and data visualization are two different but interrelated concepts. Data science refers to the science of extracting and exploring data in order to find patterns that can be used for decision making at different levels. Data visualization can be considered as a subdomain of data science where you visualize data with the help of graphs and tables in order to find out which data is most significant and can help in the identification of important patterns. This book is dedicated to data visualization and explains how to perform data visualization on a variety of datasets using various data visualization libraries written in the Python programming language. It is suggested that you use this book for data visualization purposes only and not for decision making. For decision making and pattern identification, read this book in conjunction with a dedicated book on machine learning and data science. We will start by digging into Python programming as all the projects are developed using it, and it is currently the most used programming language in the world. We will also explore the most-famous libraries for Data Visualization such as Pandas, Numpy, Matplotlib, Seaborn, etc . What this book offers... You will learn all about python in three modules, one for Plotting with Matplotlib, one for Plotting with Seaborn, and a final one Pandas for Data Visualization. All three modules will contain hands-on projects using real-world datasets and a lot of exercises. Clear and Easy to Understand Solutions All solutions in this book are extensively tested by a group of beta readers. The solutions provided are simplified as much as possible so that they can serve as examples for you to refer to when you are learning a new skill. What this book aims to do... This book is written with one goal in mind - to help beginners overcome their initial obstacles to learning Data Visualization using Python. A lot of times, newbies tend to feel intimidated by coding and data. The goal of this book is to isolate the different concepts so that beginners can gradually gain competency in the fundamentals of Python before working on a project. Beginners in Python coding and Data Science does not have to be scary or frustrating when you take one step at a time. Ready to start practicing and visualizing your data using Python? Click the BUY button now to download this book Topics Covered: Basic Plotting with Matplotlib Advanced Plotting with Matplotlib Introduction to the Python Seaborn Library Advanced Plotting with Seaborn Introduction to Pandas Library for Data Analysis Pandas for Data Visualization 3D Plotting with Matplotlib Interactive Data Visualization with Bokeh Interactive Data Visualization with Plotly Hands-on Project Exercises Click the BUY button and download the book now to start learning and coding Python for Data Visualization. ** MONEY BACK GUARANTEE BY AMAZON ** If you aren't satisfied, for more information about the amazon refund service please go to the amazon help platform or contact us by sending an email at [email protected] **GET YOUR COPY NOW, the price will be 19.99$ soon**