Search results for: interacting-electrons-and-quantum-magnetism-graduate-texts-in-contemporary-physics

Interacting Electrons and Quantum Magnetism

Author : Assa Auerbach
File Size : 32.96 MB
Format : PDF, Mobi
Download : 516
Read : 741
Download »
In the excitement and rapid pace of developments, writing pedagogical texts has low priority for most researchers. However, in transforming my lecture l notes into this book, I found a personal benefit: the organization of what I understand in a (hopefully simple) logical sequence. Very little in this text is my original contribution. Most of the knowledge was collected from the research literature. Some was acquired by conversations with colleagues; a kind of physics oral tradition passed between disciples of a similar faith. For many years, diagramatic perturbation theory has been the major theoretical tool for treating interactions in metals, semiconductors, itiner ant magnets, and superconductors. It is in essence a weak coupling expan sion about free quasiparticles. Many experimental discoveries during the last decade, including heavy fermions, fractional quantum Hall effect, high temperature superconductivity, and quantum spin chains, are not readily accessible from the weak coupling point of view. Therefore, recent years have seen vigorous development of alternative, nonperturbative tools for handling strong electron-electron interactions. I concentrate on two basic paradigms of strongly interacting (or con strained) quantum systems: the Hubbard model and the Heisenberg model. These models are vehicles for fundamental concepts, such as effective Ha miltonians, variational ground states, spontaneous symmetry breaking, and quantum disorder. In addition, they are used as test grounds for various nonperturbative approximation schemes that have found applications in diverse areas of theoretical physics.

Quantum Magnetism

Author : Ulrich Schollwöck
File Size : 80.47 MB
Format : PDF, Docs
Download : 753
Read : 978
Download »
Closing a gap in the literature, this volume is intended both as an introductory text at postgraduate level and as a modern, comprehensive reference for researchers in the field. Provides a full working description of the main fundamental tools in the theorists toolbox which have proven themselves on the field of quantum magnetism in recent years. Concludes by focusing on the most important cuurent materials form an experimental viewpoint, thus linking back to the initial theoretical concepts.

Quantum Magnetism Spin Waves and Optical Cavities

Author : Silvia Viola Kusminskiy
File Size : 56.69 MB
Format : PDF, Docs
Download : 187
Read : 697
Download »
This primer thoroughly covers the fundamentals needed to understand the interaction of light with magnetically ordered matter and it focuses on "cavity optomagnonics" which is a topic undergoing intense study in current research.The book is unique in combining elements of electromagnetism, quantum magnetism, and quantum optics and it is intended for advanced undergraduate or graduate students.

Geometry Particles and Fields

Author : Bjoern Felsager
File Size : 73.17 MB
Format : PDF, Docs
Download : 910
Read : 156
Download »
Geometry, Particles and Fields is a direct reprint of the first edition. From a review of the first edition: "The present volume is a welcome edition to the growing number of books that develop geometrical language and use it to describe new developments in particle physics...It provides clear treatment that is accessible to graduate students with a knowledge of advanced calculus and of classical physics...The second half of the book deals with the principles of differential geometry and its applications, with a mathematical machinery of very wide range. Here clear line drawings and illustrations supplement the multitude of mathematical definitions. This section, in its clarity and pedagogy, is reminiscent of Gravitation by Charles Misner, Kip Thorne and John Wheeler...Felsager gives a very clear presentation of the use of geometric methods in particle physics...For those who have resisted learning this new language, his book provides a very good introduction as well as physical motivation. The inclusion of numerous exercises, worked out, renders the book useful for independent study also. I hope this book will be followed by others from authors with equal flair to provide a readable excursion into the next step." PHYSICS TODAY Bjoern Felsager is a high school teacher in Copenhagen. Educated at the Niels Bohr Institute, he has taught at the Universities of Copenhagen and Odense.

Dynamics of a Quantum Spin Liquid

Author : Johannes Knolle
File Size : 33.99 MB
Format : PDF, ePub, Docs
Download : 406
Read : 1178
Download »
This thesis presents an exact theoretical study of dynamical correlation functions in different phases of a two-dimensional quantum spin liquid. By calculating the dynamical spin structure factor and the Raman scattering cross section, this thesis shows that there are salient signatures—qualitative and quantitative—of the Majorana fermions and the gauge fluxes emerging as effective degrees of freedom in the exactly solvable Kitaev honeycomb lattice model. The model is a representative of a class of spin liquids with Majorana fermions coupled to Z2 gauge fields. The qualitative features of the response functions should therefore be characteristic for this broad class of topological states.

Quantum Mechanics Fundamentals

Author : Kurt Gottfried
File Size : 31.65 MB
Format : PDF, ePub, Docs
Download : 786
Read : 609
Download »
Quantum mechanics was already an old and solidly established subject when the first edition of this book appeared in 1966. The context in which a graduate text on quantum mechanics is studied today has changed a good deal, however. In 1966, most entering physics graduate students had a quite limited exposure to quan tum mechanics in the form of wave mechanics. Today the standard undergraduate curriculum contains a large dose of elementary quantum mechanics, and often intro duces the abstract formalism due to Dirac. Back then, the study of the foundations by theorists and experimenters was close to dormant, and very few courses spent any time whatever on this topic. At that very time, however, John Bell's famous theorem broke the ice, and there has been a great flowering ever since, especially in the laboratory thanks to the development of quantum optics, and more recently because of the interest in quantum computing. And back then, the Feynman path integral was seen by most as a very imaginative but rather useless formulation of quantum mechanics, whereas it now plays a large role in statistical physics and quantum field theory, especially in computational work. For these and other reasons, this book is not just a revision of the 1966 edition. It has been rewritten throughout, is differently organized, and goes into greater depth on many topics that were in the old edition.

Laser Cooling and Trapping

Author : Harold J. Metcalf
File Size : 82.15 MB
Format : PDF
Download : 444
Read : 903
Download »
Intended for advanced undergraduates and beginning graduates with some basic knowledge of optics and quantum mechanics, this text begins with a review of the relevant results of quantum mechanics, before turning to the electromagnetic interactions involved in slowing and trapping atoms and ions, in both magnetic and optical traps. The concluding chapters discuss a broad range of applications, from atomic clocks and studies of collision processes, to diffraction and interference of atomic beams at optical lattices and Bose-Einstein condensation.

Spinors in Physics

Author : Jean Hladik
File Size : 62.85 MB
Format : PDF
Download : 141
Read : 591
Download »
Invented by Dirac in creating his relativistic quantum theory of the electron, spinors are important in quantum theory, relativity, nuclear physics, atomic and molecular physics, and condensed matter physics. Essentially, they are the mathematical entities that correspond to electrons in the same way that ordinary wave functions correspond to classical particles. Because of their relations to the rotation group SO(n) and the unitary group SU(n), this discussion will be of interest to applied mathematicians as well as physicists.

Introduction to Statistical Physics

Author : Silvio Salinas
File Size : 77.3 MB
Format : PDF, Mobi
Download : 652
Read : 1037
Download »
This textbook covers the basic principles of statistical physics and thermodynamics. The text is pitched at the level equivalent to first-year graduate studies or advanced undergraduate studies. It presents the subject in a straightforward and lively manner. After reviewing the basic probability theory of classical thermodynamics, the author addresses the standard topics of statistical physics. The text demonstrates their relevance in other scientific fields using clear and explicit examples. Later chapters introduce phase transitions, critical phenomena and non-equilibrium phenomena.

Mesoscopic Physics of Complex Materials

Author : T.S. Chow
File Size : 44.49 MB
Format : PDF, Docs
Download : 535
Read : 218
Download »
A cross-disciplinary study of the physical properties of complex fluids, solids, and interfaces as a function of their mesoscopic structures, with empasis on nonequilibrium phenomena. The book introduces readers to the methods of non-equilibrium statistical mechanics as applied to complex materials, but always connects theories with experiments. It shows the underlying connections between topics as diverse as critical phenomena in colloidal dynamics, glassy state relaxation and deformation, reinforced polymer composites, molecular level mixing in nanocomposites, and rough surfaces and interfaces. At the same time, each chapter is designed to be independent from the others so that the book can serve as a reference work as well as a text. It is not designed to review all the recent work in mesoscopic physics, which spans many disciplines, but rather attempts to establish a general framework for understanding and developing new materials that can not be designed by the trial and error methods. A familiarity with the basics of statistical mechanics and condensed matter physics is assumed.