Search results for: multilevel-modeling-using-mplus

Multilevel Modeling Using Mplus

Author : Holmes Finch
File Size : 33.42 MB
Format : PDF
Download : 702
Read : 374
Download »
This book is designed primarily for upper level undergraduate and graduate level students taking a course in multilevel modelling and/or statistical modelling with a large multilevel modelling component. The focus is on presenting the theory and practice of major multilevel modelling techniques in a variety of contexts, using Mplus as the software tool, and demonstrating the various functions available for these analyses in Mplus, which is widely used by researchers in various fields, including most of the social sciences. In particular, Mplus offers users a wide array of tools for latent variable modelling, including for multilevel data.

An Introduction to Multilevel Modeling Techniques

Author : Ronald H. Heck
File Size : 39.84 MB
Format : PDF, Kindle
Download : 281
Read : 1306
Download »
Univariate and multivariate multilevel models are used to understand how to design studies and analyze data in this comprehensive text distinguished by its variety of applications from the educational, behavioral, and social sciences. Basic and advanced models are developed from the multilevel regression (MLM) and latent variable (SEM) traditions within one unified analytic framework for investigating hierarchical data. The authors provide examples using each modeling approach and also explore situations where alternative approaches may be more appropriate, given the research goals. Numerous examples and exercises allow readers to test their understanding of the techniques presented. Changes to the new edition include: -The use of Mplus 7.2 for running the analyses including the input and data files at www.routledge.com/9781848725522. -Expanded discussion of MLM and SEM model-building that outlines the steps taken in the process, the relevant Mplus syntax, and tips on how to evaluate the models. -Expanded pedagogical program now with chapter objectives, boldfaced key terms, a glossary, and more tables and graphs to help students better understand key concepts and techniques. -Numerous, varied examples developed throughout which make this book appropriate for use in education, psychology, business, sociology, and the health sciences. -Expanded coverage of missing data problems in MLM using ML estimation and multiple imputation to provide currently-accepted solutions (Ch. 10). -New chapter on three-level univariate and multilevel multivariate MLM models provides greater options for investigating more complex theoretical relationships(Ch.4). -New chapter on MLM and SEM models with categorical outcomes facilitates the specification of multilevel models with observed and latent outcomes (Ch.8). -New chapter on multilevel and longitudinal mixture models provides readers with options for identifying emergent groups in hierarchical data (Ch.9). -New chapter on the utilization of sample weights, power analysis, and missing data provides guidance on technical issues of increasing concern for research publication (Ch.10). Ideal as a text for graduate courses on multilevel, longitudinal, latent variable modeling, multivariate statistics, or advanced quantitative techniques taught in psychology, business, education, health, and sociology, this book’s practical approach also appeals to researchers. Recommended prerequisites are introductory univariate and multivariate statistics.

Using Mplus for Structural Equation Modeling

Author : E. Kevin Kelloway
File Size : 56.1 MB
Format : PDF, Docs
Download : 643
Read : 597
Download »
Ideal for researchers and graduate students in the social sciences who require knowledge of structural equation modeling techniques to answer substantive research questions, Using Mplus for Structural Equation Modeling provides a reader-friendly introduction to the major types of structural equation models implemented in the Mplus framework. This practical book, which updates author E. Kevin Kelloway’s 1998 book Using LISREL for Structural Equation Modeling, retains the successful five-step process employed in the earlier book, with a thorough update for use in the Mplus environment. Kelloway provides an overview of structural equation modeling techniques in Mplus, including the estimation of confirmatory factor analysis and observed variable path analysis. He also covers multilevel modeling for hypothesis testing in real life settings and offers an introduction to the extended capabilities of Mplus, such as exploratory structural equation modeling and estimation and testing of mediated relationships. A sample application with the source code, printout, and results is presented for each type of analysis.

Structural Equation Modeling with Mplus

Author : Barbara M. Byrne
File Size : 34.28 MB
Format : PDF, Kindle
Download : 485
Read : 362
Download »
Modeled after Barbara Byrne’s other best-selling structural equation modeling (SEM) books, this practical guide reviews the basic concepts and applications of SEM using Mplus Versions 5 & 6. The author reviews SEM applications based on actual data taken from her own research. Using non-mathematical language, it is written for the novice SEM user. With each application chapter, the author "walks" the reader through all steps involved in testing the SEM model including: an explanation of the issues addressed illustrated and annotated testing of the hypothesized and post hoc models explanation and interpretation of all Mplus input and output files important caveats pertinent to the SEM application under study a description of the data and reference upon which the model was based the corresponding data and syntax files available at http://www.psypress.com/sem-with-mplus/datasets . The first two chapters introduce the fundamental concepts of SEM and important basics of the Mplus program. The remaining chapters focus on SEM applications and include a variety of SEM models presented within the context of three sections: Single-group analyses, Multiple-group analyses, and other important topics, the latter of which includes the multitrait-multimethod, latent growth curve, and multilevel models. Intended for researchers, practitioners, and students who use SEM and Mplus, this book is an ideal resource for graduate level courses on SEM taught in psychology, education, business, and other social and health sciences and/or as a supplement for courses on applied statistics, multivariate statistics, intermediate or advanced statistics, and/or research design. Appropriate for those with limited exposure to SEM or Mplus, a prerequisite of basic statistics through regression analysis is recommended.

Multilevel Analysis

Author : Tom A B Snijders
File Size : 27.16 MB
Format : PDF, ePub
Download : 841
Read : 805
Download »
The Second Edition of this classic text introduces the main methods, techniques and issues involved in carrying out multilevel modeling and analysis. Snijders and Bosker's book is an applied, authoritative and accessible introduction to the topic, providing readers with a clear conceptual and practical understanding of all the main issues involved in designing multilevel studies and conducting multilevel analysis. This book provides step-by-step coverage of: • multilevel theories • ecological fallacies • the hierarchical linear model • testing and model specification • heteroscedasticity • study designs • longitudinal data • multivariate multilevel models • discrete dependent variables There are also new chapters on: • missing data • multilevel modeling and survey weights • Bayesian and MCMC estimation and latent-class models. This book has been comprehensively revised and updated since the last edition, and now discusses modeling using HLM, MLwiN, SAS, Stata including GLLAMM, R, SPSS, Mplus, WinBugs, Latent Gold, and SuperMix. This is a must-have text for any student, teacher or researcher with an interest in conducting or understanding multilevel analysis. Tom A.B. Snijders is Professor of Statistics in the Social Sciences at the University of Oxford and Professor of Statistics and Methodology at the University of Groningen. Roel J. Bosker is Professor of Education and Director of GION, Groningen Institute for Educational Research, at the University of Groningen.

Data Analysis with Mplus

Author : Christian Geiser
File Size : 71.14 MB
Format : PDF, Kindle
Download : 652
Read : 688
Download »
A practical introduction to using Mplus for the analysis of multivariate data, this volume provides step-by-step guidance, complete with real data examples, numerous screen shots, and output excerpts. The author shows how to prepare a data set for import in Mplus using SPSS. He explains how to specify different types of models in Mplus syntax and address typical caveats--for example, assessing measurement invariance in longitudinal SEMs. Coverage includes path and factor analytic models as well as mediational, longitudinal, multilevel, and latent class models. Specific programming tips and solution strategies are presented in boxes in each chapter. The companion website (http://crmda.ku.edu/guilford/geiser) features data sets, annotated syntax files, and output for all of the examples. Of special utility to instructors and students, many of the examples can be run with the free demo version of Mplus.

Multilevel Analysis

Author : Joop J. Hox
File Size : 25.81 MB
Format : PDF, ePub, Mobi
Download : 101
Read : 528
Download »
This practical introduction helps readers apply multilevel techniques to their research. Noted as an accessible introduction, the book also includes advanced extensions, making it useful as both an introduction and as a reference to students, researchers, and methodologists. Basic models and examples are discussed in non-technical terms with an emphasis on understanding the methodological and statistical issues involved in using these models. The estimation and interpretation of multilevel models is demonstrated using realistic examples from various disciplines. For example, readers will find data sets on stress in hospitals, GPA scores, survey responses, street safety, epilepsy, divorce, and sociometric scores, to name a few. The data sets are available on the website in SPSS, HLM, MLwiN, LISREL and/or Mplus files. Readers are introduced to both the multilevel regression model and multilevel structural models. Highlights of the second edition include: Two new chapters—one on multilevel models for ordinal and count data (Ch. 7) and another on multilevel survival analysis (Ch. 8). Thoroughly updated chapters on multilevel structural equation modeling that reflect the enormous technical progress of the last few years. The addition of some simpler examples to help the novice, whilst the more complex examples that combine more than one problem have been retained. A new section on multivariate meta-analysis (Ch. 11). Expanded discussions of covariance structures across time and analyzing longitudinal data where no trend is expected. Expanded chapter on the logistic model for dichotomous data and proportions with new estimation methods. An updated website at http://www.joophox.net/ with data sets for all the text examples and up-to-date screen shots and PowerPoint slides for instructors. Ideal for introductory courses on multilevel modeling and/or ones that introduce this topic in some detail taught in a variety of disciplines including: psychology, education, sociology, the health sciences, and business. The advanced extensions also make this a favorite resource for researchers and methodologists in these disciplines. A basic understanding of ANOVA and multiple regression is assumed. The section on multilevel structural equation models assumes a basic understanding of SEM.

Multilevel Modeling of Categorical Outcomes Using IBM SPSS

Author : Ronald H Heck
File Size : 47.69 MB
Format : PDF, ePub
Download : 379
Read : 463
Download »
This is the first workbook that introduces the multilevel approach to modeling with categorical outcomes using IBM SPSS Version 20. Readers learn how to develop, estimate, and interpret multilevel models with categorical outcomes. The authors walk readers through data management, diagnostic tools, model conceptualization, and model specification issues related to single-level and multilevel models with categorical outcomes. Screen shots clearly demonstrate techniques and navigation of the program. Modeling syntax is provided in the appendix. Examples of various types of categorical outcomes demonstrate how to set up each model and interpret the output. Extended examples illustrate the logic of model development, interpretation of output, the context of the research questions, and the steps around which the analyses are structured. Readers can replicate examples in each chapter by using the corresponding data and syntax files available at www.psypress.com/9781848729568. The book opens with a review of multilevel with categorical outcomes, followed by a chapter on IBM SPSS data management techniques to facilitate working with multilevel and longitudinal data sets. Chapters 3 and 4 detail the basics of the single-level and multilevel generalized linear model for various types of categorical outcomes. These chapters review underlying concepts to assist with trouble-shooting common programming and modeling problems. Next population-average and unit-specific longitudinal models for investigating individual or organizational developmental processes are developed. Chapter 6 focuses on single- and multilevel models using multinomial and ordinal data followed by a chapter on models for count data. The book concludes with additional trouble shooting techniques and tips for expanding on the modeling techniques introduced. Ideal as a supplement for graduate level courses and/or professional workshops on multilevel, longitudinal, latent variable modeling, multivariate statistics, and/or advanced quantitative techniques taught in psychology, business, education, health, and sociology, this practical workbook also appeals to researchers in these fields. An excellent follow up to the authors’ highly successful Multilevel and Longitudinal Modeling with IBM SPSS and Introduction to Multilevel Modeling Techniques, 2nd Edition, this book can also be used with any multilevel and/or longitudinal book or as a stand-alone text introducing multilevel modeling with categorical outcomes.

Growth Modeling

Author : Kevin J. Grimm
File Size : 27.96 MB
Format : PDF, ePub, Docs
Download : 379
Read : 351
Download »
Growth models are among the core methods for analyzing how and when people change. Discussing both structural equation and multilevel modeling approaches, this book leads readers step by step through applying each model to longitudinal data to answer particular research questions. It demonstrates cutting-edge ways to describe linear and nonlinear change patterns, examine within-person and between-person differences in change, study change in latent variables, identify leading and lagging indicators of change, evaluate co-occurring patterns of change across multiple variables, and more. User-friendly features include real data examples, code (for Mplus or NLMIXED in SAS, and OpenMx or nlme in R), discussion of the output, and interpretation of each model's results. User-Friendly Features *Real, worked-through longitudinal data examples serving as illustrations in each chapter. *Script boxes that provide code for fitting the models to example data and facilitate application to the reader's own data. *"Important Considerations" sections offering caveats, warnings, and recommendations for the use of specific models. *Companion website supplying datasets and syntax for the book's examples, along with additional code in SAS/R for linear mixed-effects modeling.

Advances in Multilevel Modeling for Educational Research

Author : Jeffrey R. Harring
File Size : 51.26 MB
Format : PDF
Download : 679
Read : 937
Download »
The significance that practitioners are placing on the use of multilevel models is undeniable as researchers want to both accurately partition variance stemming from complex sampling designs and understand relations within and between variables describing the hierarchical levels of these nested data structures. Simply scan the applied literature and one can see evidence of this trend by noticing the number of articles adopting multilevel models as their primary modeling framework. Helping to drive the popularity of their use, governmental funding agencies continue to advocate the use of multilevel models as part of a comprehensive analytic strategy for conducting rigorous and relevant research to improve our nation’s education system. Advances in Multilevel Modeling for Educational Research: Addressing Practical Issues Found in Real?World Applications is a resource intended for advanced graduate students, faculty and/or researchers interested in multilevel data analysis, especially in education, social and behavioral sciences. The chapters are written by prominent methodological researchers across diverse research domains such as educational statistics, quantitative psychology, and psychometrics. Each chapter exposes the reader to some of the latest methodological innovations, refinements and state?of?the?art developments and perspectives in the analysis of multilevel data including current best practices of standard techniques. We believe this volume will be particularly appealing to researchers in domains including but not limited to: educational policy and administration, educational psychology including school psychology and special education, and clinical psychology. In fact, we believe this volume will be a desirable resource for any research area that uses hierarchically nested data. The book will likely be attractive to applied and methodological researchers in several professional organizations such as the American Educational Research Association (AERA), the American Psychological Association (APA), the American Psychological Society (APS), the Society for Research on Educational Effectiveness (SREE), and other related organizations.

Handbook of Advanced Multilevel Analysis

Author : Joop Hox
File Size : 37.63 MB
Format : PDF, Docs
Download : 830
Read : 457
Download »
This new handbook is the definitive resource on advanced topics related to multilevel analysis. The editors assembled the top minds in the field to address the latest applications of multilevel modeling as well as the specific difficulties and methodological problems that are becoming more common as more complicated models are developed. Each chapter features examples that use actual datasets. These datasets, as well as the code to run the models, are available on the book’s website http://www.hlm-online.com . Each chapter includes an introduction that sets the stage for the material to come and a conclusion. Divided into five sections, the first provides a broad introduction to the field that serves as a framework for understanding the latter chapters. Part 2 focuses on multilevel latent variable modeling including item response theory and mixture modeling. Section 3 addresses models used for longitudinal data including growth curve and structural equation modeling. Special estimation problems are examined in section 4 including the difficulties involved in estimating survival analysis, Bayesian estimation, bootstrapping, multiple imputation, and complicated models, including generalized linear models, optimal design in multilevel models, and more. The book’s concluding section focuses on statistical design issues encountered when doing multilevel modeling including nested designs, analyzing cross-classified models, and dyadic data analysis. Intended for methodologists, statisticians, and researchers in a variety of fields including psychology, education, and the social and health sciences, this handbook also serves as an excellent text for graduate and PhD level courses in multilevel modeling. A basic knowledge of multilevel modeling is assumed.

Multilevel Modeling of Educational Data

Author : Ann A. O'Connell
File Size : 77.43 MB
Format : PDF, Mobi
Download : 908
Read : 252
Download »
(sponsored by the Educational Statisticians, SIG) Multilevel Modeling of Educational Data, coedited by Ann A. O’Connell, Ed.D., and D. Betsy McCoach, Ph.D., is the next volume in the series: Quantitative Methods in Education and the Behavioral Sciences: Issues, Research and Teaching (Information Age Publishing), sponsored by the Educational Statisticians' Special Interest Group (EdStat SIG) of the American Educational Research Association. The use of multilevel analyses to examine effects of groups or contexts on individual outcomes has burgeoned over the past few decades. Multilevel modeling techniques allow educational researchers to more appropriately model data that occur within multiple hierarchies (i.e. the classroom, the school, and/or the district). Examples of multilevel research problems involving schools include establishing trajectories of academic achievement for children within diverse classrooms or schools or studying schoollevel characteristics on the incidence of bullying. Multilevel models provide an improvement over traditional singlelevel approaches to working with clustered or hierarchical data; however, multilevel data present complex and interesting methodological challenges for the applied education research community. In keeping with the pedagogical focus for this book series, the papers this volume emphasize applications of multilevel models using educational data, with chapter topics ranging from basic to advanced. This book represents a comprehensive and instructional resource text on multilevel modeling for quantitative researchers who plan to use multilevel techniques in their work, as well as for professors and students of quantitative methods courses focusing on multilevel analysis. Through the contributions of experienced researchers and teachers of multilevel modeling, this volume provides an accessible and practical treatment of methods appropriate for use in a first and/or second course in multilevel analysis. A supporting website links chapter examples to actual data, creating an opportunity for readers to reinforce their knowledge through handson data analysis. This book serves as a guide for designing multilevel studies and applying multilevel modeling techniques in educational and behavioral research, thus contributing to a better understanding of and solution for the challenges posed by multilevel systems and data.

Recent Advancements in Structural Equation Modeling SEM From Both Methodological and Application Perspectives

Author : Oi-Man Kwok
File Size : 25.2 MB
Format : PDF, Docs
Download : 687
Read : 418
Download »
Structural equation modeling (SEM) is becoming the central and one of the most popular analytical tools in the social sciences. Many classical and modern statistical techniques such as regression analysis, path analysis, confirmatory factor analysis, and models with both measurement and structural components have been shown to fall under the umbrella of SEM. Thus, the flexibility of SEM makes it applicable to many research designs, including experimental and non-experimental data, cross-sectional and longitudinal data, and multiple-group and multilevel data. In this eBook, you will find 19 cutting-edge papers from the Research Topic: Recent Advancements in Structural Equation Modeling (SEM). These 19 papers cover a wide variety of topics related to SEM, including: (a) analysis of different types of data (from cross-sectional data with floor effects to complex survey data and longitudinal data); (b) measurement-related issues (from the development of new scale to the evaluation of person fit and new ways to test measurement invariance); and (c) technical advancement and software development. We hope that the readers will gain new perspectives and be able to apply some of the new techniques and models discussed in these 19 papers.

A Beginner s Guide to Structural Equation Modeling

Author : Randall E. Schumacker
File Size : 43.21 MB
Format : PDF, Docs
Download : 782
Read : 1114
Download »
Noted for its crystal clear explanations, this book is considered the most comprehensive introductory text to structural equation modeling (SEM). Noted for its thorough review of basic concepts and a wide variety of models, this book better prepares readers to apply SEM to a variety of research questions. Programming details and the use of algebra are kept to a minimum to help readers easily grasp the concepts so they can conduct their own analysis and critique related research. Featuring a greater emphasis on statistical power and model validation than other texts, each chapter features key concepts, examples from various disciplines, tables and figures, a summary, and exercises. Highlights of the extensively revised 4th edition include: -Uses different SEM software (not just Lisrel) including Amos, EQS, LISREL, Mplus, and R to demonstrate applications. -Detailed introduction to the statistical methods related to SEM including correlation, regression, and factor analysis to maximize understanding (Chs. 1 – 6). -The 5 step approach to modeling data (specification, identification, estimation, testing, and modification) is now covered in more detail and prior to the modeling chapters to provide a more coherent view of how to create models and interpret results (ch. 7). -More discussion of hypothesis testing, power, sampling, effect sizes, and model fit, critical topics for beginning modelers (ch. 7). - Each model chapter now focuses on one technique to enhance understanding by providing more description, assumptions, and interpretation of results, and an exercise related to analysis and output (Chs. 8 -15). -The use of SPSS AMOS diagrams to describe the theoretical models. -The key features of each of the software packages (Ch. 1). -Guidelines for reporting SEM research (Ch. 16). -www.routledge.com/9781138811935 which provides access to data sets that can be used with any program, links to other SEM examples, related readings, and journal articles, and more. Reorganized, the new edition begins with a more detailed introduction to SEM including the various software packages available, followed by chapters on data entry and editing, and correlation which is critical to understanding how missing data, non-normality, measurement, and restriction of range in scores affects SEM analysis. Multiple regression, path, and factor models are then reviewed and exploratory and confirmatory factor analysis is introduced. These chapters demonstrate how observed variables share variance in defining a latent variables and introduce how measurement error can be removed from observed variables. Chapter 7 details the 5 SEM modeling steps including model specification, identification, estimation, testing, and modification along with a discussion of hypothesis testing and the related issues of power, and sample and effect sizes.Chapters 8 to 15 provide comprehensive introductions to different SEM models including Multiple Group, Second-Order CFA, Dynamic Factor, Multiple-Indicator Multiple-Cause, Mixed Variable and Mixture, Multi-Level, Latent Growth, and SEM Interaction Models. Each of the 5 SEM modeling steps is explained for each model along with an application. Chapter exercises provide practice with and enhance understanding of the analysis of each model. The book concludes with a review of SEM guidelines for reporting research. Designed for introductory graduate courses in structural equation modeling, factor analysis, advanced, multivariate, or applied statistics, quantitative techniques, or statistics II taught in psychology, education, business, and the social and healthcare sciences, this practical book also appeals to researchers in these disciplines. Prerequisites include an introduction to intermediate statistics that covers correlation and regression principles.

Latent Growth Curve Modeling

Author : Kristopher J. Preacher
File Size : 40.96 MB
Format : PDF, ePub, Docs
Download : 329
Read : 834
Download »
Provides easy-to-follow, didactic examples of several common growth modeling approaches

Multilevel Analysis

Author : Joop Hox
File Size : 52.9 MB
Format : PDF, Mobi
Download : 813
Read : 160
Download »
This practical introduction helps readers apply multilevel techniques to their research. Noted as an accessible introduction, the book also includes advanced extensions, making it useful as both an introduction and as a reference to students, researchers, and methodologists. Basic models and examples are discussed in non-technical terms with an emphasis on understanding the methodological and statistical issues involved in using these models. The estimation and interpretation of multilevel models is demonstrated using realistic examples from various disciplines. For example, readers will find data sets on stress in hospitals, GPA scores, survey responses, street safety, epilepsy, divorce, and sociometric scores, to name a few. The data sets are available on the website in SPSS, HLM, MLwiN, LISREL and/or Mplus files. Readers are introduced to both the multilevel regression model and multilevel structural models. Highlights of the second edition include: Two new chapters—one on multilevel models for ordinal and count data (Ch. 7) and another on multilevel survival analysis (Ch. 8). Thoroughly updated chapters on multilevel structural equation modeling that reflect the enormous technical progress of the last few years. The addition of some simpler examples to help the novice, whilst the more complex examples that combine more than one problem have been retained. A new section on multivariate meta-analysis (Ch. 11). Expanded discussions of covariance structures across time and analyzing longitudinal data where no trend is expected. Expanded chapter on the logistic model for dichotomous data and proportions with new estimation methods. An updated website at http://www.joophox.net/ with data sets for all the text examples and up-to-date screen shots and PowerPoint slides for instructors. Ideal for introductory courses on multilevel modeling and/or ones that introduce this topic in some detail taught in a variety of disciplines including: psychology, education, sociology, the health sciences, and business. The advanced extensions also make this a favorite resource for researchers and methodologists in these disciplines. A basic understanding of ANOVA and multiple regression is assumed. The section on multilevel structural equation models assumes a basic understanding of SEM.

Doing Statistical Mediation and Moderation

Author : Paul E. Jose
File Size : 75.44 MB
Format : PDF
Download : 260
Read : 857
Download »
"Written in a friendly, conversational style, this book offers a hands-on approach to statistical mediation and moderation for both beginning researchers and those familiar with modeling. Starting with a gentle review of regression-based analysis, Paul Jose covers basic mediation and moderation techniques before moving on to advanced topics in multilevel modeling, structural equation modeling, and hybrid combinations, such as moderated mediation. User-friendly features include numerous graphs and carefully worked-through examples; "Helpful Suggestions" about procedures and pitfalls; "Knowledge Boxes" delving into special topics, such as dummy coding; and end-of-chapter exercises and problems (with answers). The companion website provides downloadable sample data sets that are used in the book to demonstrate particular analytic strategies, and explains how researchers and students can execute analyses using Jose's online programs, MedGraph and ModGraph. Appendices present SPSS, AMOS, and Mplus syntax for conducting the key types of analyses"--

Multilevel Analysis

Author : J. J. Hox
File Size : 52.58 MB
Format : PDF, Mobi
Download : 137
Read : 227
Download »
This volume provides an introduction to multilevel analysis for applied researchers. The book presents two types of multilevel models: the multilevel regression model; and a model for multilevel covariance structures.

New Developments and Techniques in Structural Equation Modeling

Author : George A. Marcoulides
File Size : 66.49 MB
Format : PDF, Mobi
Download : 971
Read : 1193
Download »
Featuring contributions from some of the leading researchers in the field of SEM, most chapters are written by the author(s) who originally proposed the technique and/or contributed substantially to its development. Content highlights include latent variable mixture modeling, multilevel modeling, interaction modeling, models for dealing with nonstandard and noncompliance samples, the latest on the analysis of growth curve and longitudinal data, specification searches, item parceling, and equivalent models. This volume will appeal to educators, psychologists, biologists, business professionals, medical researchers, and other social and health scientists. It is assumed that the reader has mastered the equivalent of a graduate-level multivariate statistics course that included coverage of introductory SEM techniques.

Estimating Multilevel Structural Equation Models with Random Slopes for Latent Covariates

Author : Nicholas J. Rockwood
File Size : 41.73 MB
Format : PDF, ePub
Download : 868
Read : 798
Download »
Multilevel structural equation modeling (MSEM) is an emerging statistical framework for the analysis of hierarchically structured data, such as data corresponding to students nested within classrooms or repeated measurements nested within individuals. The MSEM framework provides several advantages over the traditional multilevel modeling (MLM) and structural equation modeling (SEM) frameworks, including the ability to model multivariate responses, level-2 response variables, measurement error via factor models, and structural relations (e.g., regressions) among the random effects/latent variables. Although several formulations of the MSEM have been presented (see, e.g., Liang & Bentler, 2004; Rabe-Hesketh, Skrondal, & Pickles, 2004; Mehta & Neale, 2005), the framework of B. Muthen and Asparouhov (2008) as implemented in Mplus (L. K. Muthen & Muthen, 2017) has the advantage that the relationship between lower-level (i.e., level-1) latent variables can be modeled as randomly varying across upper-level (i.e., level-2) units. Unfortunately, maximum likelihood (ML) estimation of the parameters for such models, as implemented in Mplus, is computationally demanding due to the likelihood function having to be approximated, as the function cannot be computed in closed-form. Mplus numerically integrates over all of the random effects/latent variables using quadrature-based methods. This approach is not feasible for high-dimensional latent variable models, which reduces the potential models that can practically be fit. In this dissertation, I develop a more computationally efficient and accurate ML estimation routine for MSEMs with random slopes for latent variables. The method relies on a reformulation of the likelihood function so that some of the integrals can be computed analytically, reducing the dimension of numerical integration required. Specifically, only the random slopes for latent variables need to be numerically integrated, as the integrals corresponding to the other random effects can be computed in closed-form. For most models implemented in practice, this method results in a function that typically requires less than four dimensions of numerical integration. Thus, the estimation routine I develop here allows for many models within the MSEM framework to be estimated that would otherwise be impractical to fit using currently implemented methods. In addition to developing this new ML estimation algorithm, three example MSEMs are fit to real-world datasets to demonstrate the generality of the MSEM framework. Further, I assess the performance of this estimation routine using three small-scale simulation studies based on the examples. Overall, the estimation routine appears to recover the true parameters well, highlighting the utility of this new method. I also discuss limitations of the proposed method, possible ways of extending the methodology to account for other types of data (e.g., categorical and count outcomes), and the importance of future research to assess the performance of the ML estimates for such models relative to other modeling frameworks.