Search results for: prospects-in-mathematics-am-70-volume-70

Prospects in Mathematics

Author : Friedrich Hirzebruch
File Size : 61.34 MB
Format : PDF
Download : 137
Read : 887
Download »
Five papers by distinguished American and European mathematicians describe some current trends in mathematics in the perspective of the recent past and in terms of expectations for the future. Among the subjects discussed are algebraic groups, quadratic forms, topological aspects of global analysis, variants of the index theorem, and partial differential equations.

Arthur s Invariant Trace Formula and Comparison of Inner Forms

Author : Yuval Z. Flicker
File Size : 25.85 MB
Format : PDF, Kindle
Download : 123
Read : 533
Download »
This monograph provides an accessible and comprehensive introduction to James Arthur’s invariant trace formula, a crucial tool in the theory of automorphic representations. It synthesizes two decades of Arthur’s research and writing into one volume, treating a highly detailed and often difficult subject in a clearer and more uniform manner without sacrificing any technical details. The book begins with a brief overview of Arthur’s work and a proof of the correspondence between GL(n) and its inner forms in general. Subsequent chapters develop the invariant trace formula in a form fit for applications, starting with Arthur’s proof of the basic, non-invariant trace formula, followed by a study of the non-invariance of the terms in the basic trace formula, and, finally, an in-depth look at the development of the invariant formula. The final chapter illustrates the use of the formula by comparing it for G’ = GL(n) and its inner form G and for functions with matching orbital integrals.bribr/i/idiviiArthur’s Invariant Trace Formula and Comparison of Inner Forms/div

Syzygies and Homotopy Theory

Author : F.E.A. Johnson
File Size : 82.73 MB
Format : PDF
Download : 120
Read : 778
Download »
The most important invariant of a topological space is its fundamental group. When this is trivial, the resulting homotopy theory is well researched and familiar. In the general case, however, homotopy theory over nontrivial fundamental groups is much more problematic and far less well understood. Syzygies and Homotopy Theory explores the problem of nonsimply connected homotopy in the first nontrivial cases and presents, for the first time, a systematic rehabilitation of Hilbert's method of syzygies in the context of non-simply connected homotopy theory. The first part of the book is theoretical, formulated to allow a general finitely presented group as a fundamental group. The innovation here is to regard syzygies as stable modules rather than minimal modules. Inevitably this forces a reconsideration of the problems of noncancellation; these are confronted in the second, practical, part of the book. In particular, the second part of the book considers how the theory works out in detail for the specific examples Fn ́F where Fn is a free group of rank n and F is finite. Another innovation is to parametrize the first syzygy in terms of the more familiar class of stably free modules. Furthermore, detailed description of these stably free modules is effected by a suitable modification of the method of Milnor squares. The theory developed within this book has potential applications in various branches of algebra, including homological algebra, ring theory and K-theory. Syzygies and Homotopy Theory will be of interest to researchers and also to graduate students with a background in algebra and algebraic topology.

The Geometry and Topology of Coxeter Groups LMS 32

Author : Michael Davis
File Size : 75.38 MB
Format : PDF, Kindle
Download : 169
Read : 262
Download »
The Geometry and Topology of Coxeter Groups is a comprehensive and authoritative treatment of Coxeter groups from the viewpoint of geometric group theory. Groups generated by reflections are ubiquitous in mathematics, and there are classical examples of reflection groups in spherical, Euclidean, and hyperbolic geometry. Any Coxeter group can be realized as a group generated by reflection on a certain contractible cell complex, and this complex is the principal subject of this book. The book explains a theorem of Moussong that demonstrates that a polyhedral metric on this cell complex is nonpositively curved, meaning that Coxeter groups are "CAT(0) groups." The book describes the reflection group trick, one of the most potent sources of examples of aspherical manifolds. And the book discusses many important topics in geometric group theory and topology, including Hopf's theory of ends; contractible manifolds and homology spheres; the Poincaré Conjecture; and Gromov's theory of CAT(0) spaces and groups. Finally, the book examines connections between Coxeter groups and some of topology's most famous open problems concerning aspherical manifolds, such as the Euler Characteristic Conjecture and the Borel and Singer conjectures.

Geometry of Riemann Surfaces and Teichm ller Spaces

Author : M. Seppälä
File Size : 67.15 MB
Format : PDF, Mobi
Download : 639
Read : 167
Download »
The moduli problem is to describe the structure of the space of isomorphism classes of Riemann surfaces of a given topological type. This space is known as the moduli space and has been at the center of pure mathematics for more than a hundred years. In spite of its age, this field still attracts a lot of attention, the smooth compact Riemann surfaces being simply complex projective algebraic curves. Therefore the moduli space of compact Riemann surfaces is also the moduli space of complex algebraic curves. This space lies on the intersection of many fields of mathematics and may be studied from many different points of view. The aim of this monograph is to present information about the structure of the moduli space using as concrete and elementary methods as possible. This simple approach leads to a rich theory and opens a new way of treating the moduli problem, putting new life into classical methods that were used in the study of moduli problems in the 1920s.

Reduction Theory and Arithmetic Groups

Author : Joachim Schwermer
File Size : 85.31 MB
Format : PDF, ePub, Mobi
Download : 722
Read : 1287
Download »
Arithmetic groups are generalisations, to the setting of algebraic groups over a global field, of the subgroups of finite index in the general linear group with entries in the ring of integers of an algebraic number field. They are rich, diverse structures and they arise in many areas of study. This text enables you to build a solid, rigorous foundation in the subject. It first develops essential geometric and number theoretical components to the investigations of arithmetic groups, and then examines a number of different themes, including reduction theory, (semi)-stable lattices, arithmetic groups in forms of the special linear group, unipotent groups and tori, and reduction theory for adelic coset spaces. Also included is a thorough treatment of the construction of geometric cycles in arithmetically defined locally symmetric spaces, and some associated cohomological questions. Written by a renowned expert, this book is a valuable reference for researchers and graduate students.

Buildings

Author : Peter Abramenko
File Size : 79.86 MB
Format : PDF
Download : 518
Read : 269
Download »
This book treats Jacques Tit's beautiful theory of buildings, making that theory accessible to readers with minimal background. It covers all three approaches to buildings, so that the reader can choose to concentrate on one particular approach. Beginners can use parts of the new book as a friendly introduction to buildings, but the book also contains valuable material for the active researcher. This book is suitable as a textbook, with many exercises, and it may also be used for self-study.

Groups

Author : T. W. Müller
File Size : 54.28 MB
Format : PDF, ePub
Download : 209
Read : 428
Download »
In 1999 a number of eminent mathematicians were invited to Bielefeld to present lectures at a conference on topological, combinatorial and arithmetic aspects of (infinite) groups. The present volume consists of survey and research articles invited from participants in this conference. Topics covered include topological finiteness properties of groups, Kac-Moody groups, the theory of Euler characteristics, the connection between groups, formal languages and automata, the Magnus-Nielsen method for one-relator groups, atomic and just infinite groups, topology in permutation groups, probabilistic group theory, the theory of subgroup growth, hyperbolic lattices in dimension three, generalised triangle groups and reduction theory. All contributions are written in a relaxed and attractive style, accessible not only to specialists, but also to good graduate and post-graduate students, who will find inspiration for a number of basic research projects at various levels of technical difficulty.

Nonlinear Poisson Brackets

Author : Mihail Vladimirovi_ Karasev
File Size : 67.45 MB
Format : PDF, ePub
Download : 904
Read : 967
Download »
This book deals with two old mathematical problems. The first is the problem of constructing an analog of a Lie group for general nonlinear Poisson brackets. The second is the quantization problem for such brackets in the semiclassical approximation (which is the problem of exact quantization for the simplest classes of brackets). These problems are progressively coming to the fore in the modern theory of differential equations and quantum theory, since the approach based on constructions of algebras and Lie groups seems, in a certain sense, to be exhausted. The authors' main goal is to describe in detail the new objects that appear in the solution of these problems. Many ideas of algebra, modern differential geometry, algebraic topology, and operator theory are synthesized here. The authors prove all statements in detail, thus making the book accessible to graduate students.

Singular Intersection Homology

Author : Greg Friedman
File Size : 68.93 MB
Format : PDF, Docs
Download : 354
Read : 861
Download »
The first expository book-length introduction to intersection homology from the viewpoint of singular and piecewise linear chains.